158 research outputs found

    Android Malware Family Classification Based on Resource Consumption over Time

    Full text link
    The vast majority of today's mobile malware targets Android devices. This has pushed the research effort in Android malware analysis in the last years. An important task of malware analysis is the classification of malware samples into known families. Static malware analysis is known to fall short against techniques that change static characteristics of the malware (e.g. code obfuscation), while dynamic analysis has proven effective against such techniques. To the best of our knowledge, the most notable work on Android malware family classification purely based on dynamic analysis is DroidScribe. With respect to DroidScribe, our approach is easier to reproduce. Our methodology only employs publicly available tools, does not require any modification to the emulated environment or Android OS, and can collect data from physical devices. The latter is a key factor, since modern mobile malware can detect the emulated environment and hide their malicious behavior. Our approach relies on resource consumption metrics available from the proc file system. Features are extracted through detrended fluctuation analysis and correlation. Finally, a SVM is employed to classify malware into families. We provide an experimental evaluation on malware samples from the Drebin dataset, where we obtain a classification accuracy of 82%, proving that our methodology achieves an accuracy comparable to that of DroidScribe. Furthermore, we make the software we developed publicly available, to ease the reproducibility of our results.Comment: Extended Versio

    SAFE: Self-Attentive Function Embeddings for Binary Similarity

    Get PDF
    The binary similarity problem consists in determining if two functions are similar by only considering their compiled form. Advanced techniques for binary similarity recently gained momentum as they can be applied in several fields, such as copyright disputes, malware analysis, vulnerability detection, etc., and thus have an immediate practical impact. Current solutions compare functions by first transforming their binary code in multi-dimensional vector representations (embeddings), and then comparing vectors through simple and efficient geometric operations. However, embeddings are usually derived from binary code using manual feature extraction, that may fail in considering important function characteristics, or may consider features that are not important for the binary similarity problem. In this paper we propose SAFE, a novel architecture for the embedding of functions based on a self-attentive neural network. SAFE works directly on disassembled binary functions, does not require manual feature extraction, is computationally more efficient than existing solutions (i.e., it does not incur in the computational overhead of building or manipulating control flow graphs), and is more general as it works on stripped binaries and on multiple architectures. We report the results from a quantitative and qualitative analysis that show how SAFE provides a noticeable performance improvement with respect to previous solutions. Furthermore, we show how clusters of our embedding vectors are closely related to the semantic of the implemented algorithms, paving the way for further interesting applications (e.g. semantic-based binary function search).Comment: Published in International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA) 201

    Proactive Online Scheduling for Shuffle Grouping in Distributed Stream Processing Systems

    Get PDF
    Shuffle grouping is a technique used by stream processing frameworks to share input load among parallel instances of stateless operators. With shuffle grouping each tuple of a stream can be assigned to any available operator instance, independently from any previous assignment. A common approach to implement shuffle grouping is to adopt a round robin policy, a simple solution that fares well as long as the tuple execution time is constant. However, such assumption rarely holds in real cases where execution time strongly depends on tuple content. As a consequence, parallel stateless operators within stream processing applications may experience unpredictable unbalance that, in the end, causes undesirable increase in tuple completion times. In this paper we propose Proactive Online Shuffle Grouping (POSG), a novel approach to shuffle grouping aimed at reducing the overall tuple completion time. POSG estimates the execution time of each tuple, enabling a proactive and online scheduling of input load to the target operator instances. Sketches are used to efficiently store the otherwise large amount of information required to schedule incoming load. We provide a probabilistic analysis and illustrate, through both simulations and a running prototype, its impact on stream processing applications

    Délestage avisé dans les systÚmes de traitement de flux

    Get PDF
    International audienceLe délestage de charge est une technique utilisée par les systÚmes de traitement de flux en réaction aux pics de charge imprévisibles en entrée, lorsque les ressources de calcul ne sont pas suffisamment provisionnées. Le rÎle du délesteur est d'abandonner certains tuples pour maintenir la charge en entrée en dessous d'un seuil critique, et éviter le débordement des mémoires tampons menant in fine à la défaillance complÚte du systÚme. Dans cet article, nous proposons Load-Aware Shedding (LAS), une solution de délestage de charge qui ne repose ni sur un modÚle de coût prédéfini ni sur des hypothÚses sur les temps d'exécution des tuples. LAS construit et maintient dynamiquement et efficacement un modÚle de coût pour estimer, par l'utilisation d'agrégats, la durée d'exécution de chaque tuple avec des taux d'erreur d'approximation faibles et bornés. Cette estimation est utilisée par un délesteur proactif, localisé en amont de chaque opérateur, permettant de réduire la latence liée aux files d'attente par le délestage d'un nombre minimal de tuples. Nous avons prouvé que LASest une (Δ, Ύ)-approximation d'un délesteur temps-réel optimal. De plus, nous avons évalué son impact sur des applications de traitement de flux, en terme de robustesse et de fiabilité, par une large expérimentation sur la plateforme Microsoft Azure

    A Systematization of Cybersecurity Regulations, Standards and Guidelines for the Healthcare Sector

    Full text link
    The growing adoption of IT solutions in the healthcare sector is leading to a steady increase in the number of cybersecurity incidents. As a result, organizations worldwide have introduced regulations, standards, and best practices to address cybersecurity and data protection issues in this sector. However, the application of this large corpus of documents presents operational difficulties, and operators continue to lag behind in resilience to cyber attacks. This paper contributes a systematization of the significant cybersecurity documents relevant to the healthcare sector. We collected the 49 most significant documents and used the NIST cybersecurity framework to categorize key information and support the implementation of cybersecurity measures.Comment: 14 page

    Adversarial Attacks against Binary Similarity Systems

    Full text link
    In recent years, binary analysis gained traction as a fundamental approach to inspect software and guarantee its security. Due to the exponential increase of devices running software, much research is now moving towards new autonomous solutions based on deep learning models, as they have been showing state-of-the-art performances in solving binary analysis problems. One of the hot topics in this context is binary similarity, which consists in determining if two functions in assembly code are compiled from the same source code. However, it is unclear how deep learning models for binary similarity behave in an adversarial context. In this paper, we study the resilience of binary similarity models against adversarial examples, showing that they are susceptible to both targeted and untargeted attacks (w.r.t. similarity goals) performed by black-box and white-box attackers. In more detail, we extensively test three current state-of-the-art solutions for binary similarity against two black-box greedy attacks, including a new technique that we call Spatial Greedy, and one white-box attack in which we repurpose a gradient-guided strategy used in attacks to image classifiers

    Triage of IoT Attacks Through Process Mining

    Get PDF
    The impressive growth of the IoT we witnessed in the recent years came together with a surge in cyber attacks that target it. Factories adhering to digital transformation programs are quickly adopting the IoT paradigm and are thus increasingly exposed to a large number of cyber threats that need to be detected, analyzed and appropriately mitigated. In this scenario, a common approach that is used in large organizations is to setup an attack triage system. In this setting, security operators can cherry-pick new attack patterns requiring further in-depth investigation from a mass of known attacks that can be managed automatically. In this paper, we propose an attack triage system that helps operators to quickly identify attacks with unknown behaviors, and later analyze them in detail. The novelty introduced by our solution is in the usage of process mining techniques to model known attacks and identify new variants. We demonstrate the feasibility of our approach through an evaluation based on three well-known IoT botnets, BASHLITE, LIGHTAIDRA and MIRAI, and on real current attack patterns collected through an IoT honeypot

    Italian National Framework for Cybersecurity and Data Protection

    Get PDF
    Data breaches have been one of the most common source of concerns related to cybersecurity in the last few years for many organizations. The General Data Protection Regulation (GDPR) in Europe, strongly impacted this scenario, as organizations operating with EU citizens now have to comply with strict data protection rules. In this paper we present the Italian National Framework for Cybersecurity and Data Protection, a framework derived from the NIST Cybersecurity Framework, that includes elements and tools to appropriately take into account data protection aspects in a way that is coherent and integrated with cybersecurity aspects. The goal of the proposed Framework is to provide organizations of different sizes and nature with a flexible and unified tool for the implementation of comprehensive cybersecurity and data protection programs

    Function Representations for Binary Similarity

    Get PDF
    The binary similarity problem consists in determining if two functions are similar considering only their compiled form. Advanced techniques for binary similarity recently gained momentum as they can be applied in several fields, such as copyright disputes, malware analysis, vulnerability detection, etc. In this paper we describe SAFE, a novel architecture for function representation based on a self-attentive neural network. SAFE works directly on disassembled binary functions, does not require manual feature extraction, is computationally more efficient than existing solutions, and is more general as it works on stripped binaries and on multiple architectures. Results from our experimental evaluation show how SAFE provides a performance improvement with respect to previoussolutions. Furthermore, we show how SAFE can be used in widely different use cases, thus providing a general solution for several application scenarios
    • 

    corecore